Flash-Optimized Temporal Indexing for Time-Series Data Storage
on Sensor Platforms

HUAN LI, DONG LIANG, LIHUI XIE, Beihang University
GONG ZHANG, Carnegie Mellon University
KRITHI RAMAMRITHAM, Indian Institute of Technology Bombay

While it is essential to exploit in-network processing in wireless sensor networks in order to save bandwidth
and energy, we are constrained by the limited storage available in off-the-shelf sensor devices. NAND
flash memory has great potential for extending storage capacity for sensor applications. Since each sensor
platform is typically equipped with limited main memory and sensor data, as well as the fact that queries
are temporal, existing flash index or file systems for general portable devices are not suitable for sensor
networks. We propose Time-Log Tree (TL-Tree), a novel unbalanced and cascaded structure, that takes
advantage of available flash capacity while making use of the time-series property as a primary feature for
optimizing both memory and energy constraints. Extensive experiments show TL-Tree’s ability to utilize
both flash capacity and temporal locality to support sensor data processing. Compared to other schemes, it
achieves much better access and energy savings for different kinds of random and temporal range queries. In
addition, TL-Tree can also be easily extended to support value-based queries. We have developed a hardware
board that includes a raw 128MB NAND flash chip on MicaZ mote. We have also implemented a flash driver
and the TL-Tree to demonstrate the practicality of this idea.

Categories and Subject Descriptors: H.3.1 [Content Analysis and Indexing]: Indexing methods; D.4.2
[Storage Management]: Flash memory

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Sensor platform, NAND flash, time-series data storage, memory-aware
index structure, energy efficiency

ACM Reference Format:

Huan Li, Dong Liang, Lihui Xie, Gong Zhang, and Krithi Ramamritham. 2014. Flash-optimized temporal
indexing for time-series data storage on sensor platforms. ACM Trans. Sensor Netw. 10, 4, Article 62 (June
2014), 30 pages.

DOI: http://dx.doi.org/10.1145/2526687

1. INTRODUCTION

The availability of low-cost embedded systems has fostered the development of wireless
sensor networks (WSNs). Networks of resource-constrained sensor devices are able to
sense, disseminate, and process information from the physical environment in real

This work is supported by the National Nature Science Foundation of China, NSFC (61170293), the National
High Technology Research and Development Program of China (863 Program: 2012AA0011203), State Key
Laboratory of Software Development Environment (SKLSDE-20127ZX-03), and the Scientific Research Foun-
dation for the Returned Overseas Chinese Scholars, State Education Ministry.

Authors’ addresses: H. Li (corresponding author), D. Liang, L. Xie, State Key Laboratory of Software De-
velopment Environment, School of Computer Science & Engineering, Beihang University, Beijing, China;
email: lthuan2008@gmail.com; G. Zhang, Information Networking Institute, Carnegie Mellon University,
Pittsburgh, PA; K. Ramamritham, Department of Computer Science & Engineering, Indian Institute of
Technology Bombay, India.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee.

2014 Copyright held by the Owner/Author. Publication rights licensed to ACM. 1550-4859/2014/06-ART62
$15.00

DOI: http://dx.doi.org/10.1145/2526687

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:2 H.Lietal

Table I. Comparison of NAND and NOR Flash by Specifications [Toshiba 2014]

SLC NAND Flash (x8) MLC NAND Flash (x8) MLC NOR Flash (x16)
Density 512 Mbits - 4 Gbits 1Gbit to 16 Gbits 16 Mbits to 1Gbit
Read Speed | 24 MB/s 18.6 MB/s 103 MB/s
Write Speed | 8.0 MB/s 2.4 MB/s 0.47 MB/s
Erase Time 2.0 ms 2.0 ms 900 ms
Interface 1/0O indirect access I/0O indirect access Random access
Application | Program/Data mass storage | Program/Data mass storage | eXecuteInPlace

time. In such networked systems, a single embedded device is normally equipped with
temperature, humidity, pressure, audio, and visual information collection modules,
thus WSNs should be able to store, process, correlate, and fuse data originating from
heterogeneous sources in the network. With the development of large-scale sensor
networking applications, in-network data processing, querying, and aggregation can
be employed to reduce data transmission overheads as well as energy consumption.
Rather than sending a raw data stream to the basestation outside the network, a
sensor node can save a lot of energy by keeping raw, compressed, or summary data in
situ locally and then transmitting the processed results when requested [Mathur et al.
2006; Zeinalipour-Yazti et al. 2005], or sending raw data to a nearby clusterhead with
more storage for further processing [Abbasi and Younis 2007; Fasolo et al. 2007; Li
et al. 2013]. For instance, advanced in-network signal processing algorithms designed
for volcanic earthquake detection [Song et al. 2009; Tan et al. 2009] exploit local storage.

However, many popular sensor platforms have very limited storage (e.g., RAM: 4KB—
256KB; on-chip flash: 48KB-32MB) which prevents the effective use of the advanced
sensor information processing techniques. Magnetic memory systems such as hard
disks, on the other hand, are not suitable as secondary storage for sensor platforms
due to node size and energy issues [Diao et al. 2007; Nath and Kansal 2007].

Two major forms of nonvolatile semiconductor memories, NAND flash and NOR flash,
have emerged as the dominant varieties widely utilized in portable electronics devices
in recent years. Table I illustrates various operating and performance characteristics
and major differences between NAND and NOR [Toshiba 2014]'. NOR flash is very
similar to a random access memory device and can be easily accessed, while NAND
involves a rather complicated I/O interface. Due to its high read performance and
eXecute-In-Place (XIP) property, NOR flash is best used for code storage and execution,
usually in small capacities. Compared to NOR flash, NAND flash offers faster erase and
write times and up to ten times the write endurance; it requires a smaller chip area
per cell, thus allowing greater storage densities and lower cost per bit. To this end,
NAND flash is optimized for mass data storage. In addition, NAND flash consumes
significantly less power for write-intensive sensor applications since energy is power
times time. Detailed experimental results have also corroborated this conclusion: in
the cases where the storage is designed to be an important part of the sensor networks,
the storage device preferred is the cost-effective and energy-efficient NAND flash [Diao
et al. 2007; Mathur et al. 2009; Nath and Kansal 2007].

NAND flash memory has unique read/write characteristics and some intrinsic lim-
itations. In particular, a page is the smallest unit for write and read operation, and
a block is the smallest unit for erasure at a time. Each block consists of a number of
pages and a used page can be rewritten only after erasing the entire block to which
the page belongs. Also, when a certain portion of memory is written and erased several

ISLC refers to Single-Level Cell, each storing one bit of data; MLC refers to MultiLevel Cell,
each storing multiple bits of data.

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:3

times exceeding the program/erase cycle limit, that portion can be damaged and data
integrity cannot be guaranteed. To minimize the number of block erases and maximize
flash service life, normally, the flash memory controller is integrated with a software
module called the flash translation layer (FTL) [Kwon et al. 2011] for performance
and durability enhancement. State-of-the-art FTL algorithms have been proposed and
developed both in industry and academia [Wu et al. 2007, 2010; Lee et al. 2008; Cho
et al. 2009; Park et al. 2010; Gupta et al. 2011; Chiao and Chang 2011]. The general de-
sign functions and objectives of FTL are to: (1) emulate a normal block device interface,
(2) hide the presence of erase operation/erase-before-write, and (3) address translation,
garbage collection, and wear leveling. Hence, FTL algorithms are normally complicated
that are mostly designed for solid-state drivers (SSDs), USB flash drives, GPS devices,
Bluetooth products, and other mobile PCs.

Sensor network applications are highly write intensive, so the internal copying over-
head will be huge if we have to copy the valid data to another block before erasing
the entire block whenever an update happens. On the other hand, due to the very
limited energy budget as well as CPU and memory constraints, these sophisticated
FTL techniques are not well suited for wireless sensor platforms. How to design and
achieve simple but effective sensor data organization and management systems for
NAND flash as storage on sensor devices is the problem that we address in this article.

In sensor network applications, the data gathered by sensor nodes form a time series,
namely, each element sampled at a given time. The sampling rate can be periodic in
normal situations or bursty when there is a sudden event to track and act upon in
real time. Hence, sensed data form tuples < timestamp, value >, where timestamps are
unique. In addition, a large fraction of queries in sensor applications can be expected to
access the time-series sensor data either in time sequence or within given time ranges
[Gehrke and Madden 2004; Desnoyers et al. 2005; Nath 2009]. Temporal queries may
also need aggregated data, for example, (max, min, avg) of some subset of the data
sources at some desired frequency [Trigoni et al. 2005]. For instance, a query can
be: “SELECT nodeid, light, temp FROM sensors SAMPLE PERIOD 1s for 10s” or
“SELECT MAX(mag) FROM sensors WHERE mag > thresh SAMPLE PERIOD 64ms”
or query the average value of temperatures every 5 minutes, etc. [Madden et al. 2005].
To efficiently support such queries, it is very desirable to store a large volume of sensor
data in temporal order on local storage and provide a time-based index to achieve
efficient access to temporal data.

In order to provide an order-preserving data structure for indexing temporal data, a
straightforward solution is to use the well-known B'-Tree-like structure to maintain
the relationships between indexed values and thus allow natural access to ranges,
as well as predecessor and successor operations on their key values [Desnoyers et al.
2005]. For instance, time-series sensor data can be organized by the order of times-
tamps on flash media, and then an index built using these timestamps as keys. This
index structure is the same as the bulk-loading B™-Tree structure [Ramakrishnan
and Gehrke 2003]. However, in order to keep the balance property of B*-Tree, the
rightmost index node above the leaf level has to split every time it becomes full as a
consequence of the ordered data records being appended, which in turn may cause the
splitting of all nodes along the path to the root. Considering the flash write-once char-
acteristic, such index updates will result in huge overheads for the operations on flash
media. Other B*-Tree-based systems such as MicroHash [Zeinalipour-Yazti et al. 2005],
u-Tree [Kang et al. 2007], FlashDB [Nath and Kansal 2007], and LA-Tree [Agrawal
et al. 2009], though designed specifically for flash, are all directly indexing on value,
not time.

On the other hand, building a log-based index on timestamps implies a large number
of unique keys that will lead to a very large memory footprint in FlashDB-like structure

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:4 H. Li et al.
Table Il. Comparison of TL-Tree with the State-of-the-Art
Time-Series Memory Energy Index Data Specially

Storage Optimized | Optimized | Structure for NAND | Abstraction
YAFFS No No No Log Yes File System
JFFS2 No No No Log No File System
Capsule No Yes Yes Hybrid No Object
FlashLogger No Yes Yes Log No Object
FlashDB No No Yes BT -Tree Yes Database
LA-Tree No Yes Yes BT -Tree Variant No Value Index
n-Tree No Yes No BT -Tree Variant Yes Value Index
MicroHash Yes No Yes Hash-based Yes Value Index
TL-Tree Yes Yes Yes Tree Yes Time Index

[Nath 2009]. Though existing log-structured file systems such as JFFS2 [Woodhouse
2001], YAFFS2 [Aleph One 2005], and FlashLogger [Nath 2009] are good for data
management on flash-based SSDs, it is very difficult to use any of them on memory-
constrained sensor platforms due to the following reasons: (1) it increases query cost
since it does not have tree-index support [Nath 2009]; (2) it consumes huge memory due
to large RAM footprint [Mathur et al. 2006]; and (3) it limits the use of flash capacity
because the in-memory log structure is not feasible for platforms with scarce memory.

In the face of memory and energy constraints, it is very hard to adopt current schemes
for building a time-based index. A novel time-based index structure is required not only
to support the storage of time-series sensor data in NAND flash, but also to provide
energy- and memory-cognizant operations.

In this article, we propose Time-Log Tree (TL-Tree), a novel time-based index
structure for time-series data storage on NAND flash of sensor platforms. In addi-
tion to the energy optimization that has been addressed in most existing schemes,
TL-Tree is designed to solve the following challenging problems: (1) how to manage
the time-series data and construct a time-based index specifically for NAND flash on
memory-constrained sensor platforms; (2) how to effectively support both time-based
and value-based queries. The performance goal of TL-Tree is to locate time-series sen-
sor data as quickly as possible and concurrently minimize the energy consumption
for the page-level file system on NAND flash. Table II presents a summary of com-
parison between TL-Tree and existing related work. Our contributions include the
following.

—We present TL-Tree, which incorporates the following ingredients and properties:

—Simple time-log index. In order to suit the temporal property of sensor data and
the typical temporal queries in sensor networks, TL-Tree uses time-log to index
the sensor data in the file system on NAND flash.

—Cascaded index structure. In order to minimize the usage of main memory, TL-
Tree constructs a cascaded index structure that only retains part of the index in
main memory. In contrast to those approaches where the whole index structure
is stored in main memory, this time-based cascaded design optimizes the usage of
both limited memory and large flash storage.

—Unbalanced logical tree. TL-Tree is designed to be an unbalanced tree with small
fanout that is optimized for both access cost and energy cost of lookup and insert
operations.

—In addition to effectively realizing both time query and time-range queries, we also
propose an easy-to-use indexing structure based on TL-Tree to efficiently support
value-based queries for different kinds of sensor applications.

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:5

—We analyze the storage bound problem resulting from the limited memory size of
typical off-the-shelf sensor platforms and prove a relationship between the memory
capacity and flash capacity, if the file size is designed to be an integer multiple of
flash page size and log is adopted for indexing the files. We show that the upper
bound of NAND flash capacity that can be sustained by a log-indexed structure can
be further enhanced by the cascaded tree design, even under a stringent memory
constraint.

—We provide an efficient online lookup algorithm to virtually construct the logical tree
only at runtime when the query initiates a lookup operation. Since this logical tree is
in fact not physically stored in the memory, we show that it can achieve considerable
memory savings.

—We present a driver for the MicaZ platform configured with raw NAND flash. We
also describe our implementation of TL-Tree to demonstrate the practical use of this
idea.

Compared to standard B*-Tree, TL-Tree has the following features: (1) it is an unbal-
anced tree; (2) tree nodes on flash are used to full capacity; and (3) no other physical
storage is needed for the non-leaf tree indexing nodes. Since standard B*-Tree is nor-
mally designed for traditional disk file systems and not for flash, we choose u-Tree
[Kang et al. 2007], which can be classified as a B"-Tree-based index structure with
enhancements designed specifically for NAND flash, to compare the performance in
terms of time and energy efficiency. In order to have a fair comparison, we tailored
the u-Tree to time-series storage by: (1) adding a key buffer for the generated index
keys, and (2) assigning an empty node to keep the newly arrived keys when the tree
node becomes full. This improved tree is called u(n)-Tree. Experimental results demon-
strate that TL-Tree can achieve much better performance for various sensor network
applications that include both temporal and value queries. For instance, compared to
u-Tree and u(n)-Tree, TL-Tree consumes only about 30% of the energy with a 60%
improvement in access time for random lookup under varied workloads.

The work is organized as follows. Section 2 presents the background and motivation.
Section 3 describes the TL-Tree structure and the basic operations. Section 4 discusses
the efficient data lookup operations, including the time-based search and value-based
search. Section 5 is devoted to performance evaluation, while Section 6 briefly presents
the implementation. Section 7 discusses the related work. Finally, Section 8 draws
conclusions and presents future work.

2. BACKGROUND AND DESIGN CONSIDERATIONS

In this section, we first describe various characteristics and constraints of sensor plat-
forms and flash memory. Then we discuss some design considerations that motivate
our work.

2.1. Characteristics of Sensor Platforms and NAND Flash

2.1.1. Constraints of Sensor Platforms. Memory and storage are very precious resources in
many of the start-of-the-art sensor platforms. For example, memory capacity of MicaZ
is 4KB RAM, 128KB program flash, and 4KB EEPROM, and a 512KB measurement
flash is used to store measurement readings, logs, etc.; TelosB platform is configured
with 10KB RAM, 48KB flash, and 16KB EEPROM; the data storage of an advanced
wireless sensor node platform, namely, iMote2 is: 256 KB SRAM, 32MB SDRAM, and
32MB flash. So the system softwares and applications on sensor devices have to be
memory cognizant and concise. A good example is that the core of the TinyOS operating
system only takes less than 5KB main memory in use to work under a normal situation
[Levis et al. 2005].

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:6 H.Lietal

On the other hand, under the common assumption that computation is significantly
less expensive than communication, in-network processing, including in-network
querying, data aggregation, compression, and archival storage, among others, are
promising schemes for reducing expensive communication in data-centric sensor net-
work applications. However, all these methods place high demand on the local storage
and the limited main memory and storage pose great challenges in the design of such
in-network applications.

2.1.2. Properties of NAND Flash. Each NAND flash chip is partitioned into blocks and
each block consists of a fixed number of pages. Write and read operations are done in
pages, whereas a block is the smallest unit for erase operations. A key constraint of
NAND is that writes are one time; once a page is written, it can be updated or rewritten
only after erasing the whole block to which it belongs. Erase operations are relatively
slow and expensive, and a flash block wears out after a limited number of erases. Since
a block is normally several times (e.g., 32, 64, or 128) a page size, it is unacceptable if
we have to erase the entire block whenever an update occurs. Due to this fundamental
difference between the NAND flash and the traditional block-based storage devices, the
traditional index system cannot be directly used on the raw NAND flash. (In the rest of
this article, NAND flash or flash refers to the raw NAND flash.) The other important
characteristic of NAND flash is that the energy costs of writing to and reading from a
flash are significantly different, that is, 10—20 times greater for writes than reads [Chu
et al. 2009]. At the same time, read is multiple times faster than write.

Although NAND imposes stringent constraints, they are the most energy-efficient
storage solutions for sensor devices [Mathur et al. 2006, 2009]. A recent study has
shown that the new-generation NAND flash is 100-fold more energy efficient than the
serial NOR flash present on the Mica platform, and the energy costs of read/write oper-
ations are two orders of magnitude less expensive than communication costs [Mathur
et al. 2009]. Compared to the limited available memory on sensor platforms, the distin-
guishing properties, such as large storage capacity, low cost, small size, and low power
consumption, make NAND flash very attractive and suitable to be the secondary stor-
age system for sensor networks to optimize in-network designs [Graefe 2009; Mathur
et al. 2006, 2009]. When designing the flash storage system on sensor platforms, these
properties should be considered in order to optimize the energy cost and the query
latency.

2.2. Design Considerations

The characteristics of NAND flash and resource-constrained sensor platforms imply
that the design of the flash file system and index structure should take several issues
into consideration.

2.2.1. Temporal Data Storage and Index Structure. In wireless sensor devices, different
sensors (such as temperature, humidity, pressure, and light, etc.) are used for capturing
the environment changes. Normally, they are set to acquire readings periodically, for
example, every 10 seconds, in normal situations or aperiodically when some events are
detected and the sensing modules are triggered. In either case, the readings can be
represented as a temporal data record: d =< ¢, vy, ve, ..., v, >, where ¢ denotes the
timestamp and v; refers to the value of the reading from a specific sensor. Here, we
assume that the sensor device has n fixed sensors and at the moment when the sensor
board is triggered, all sensors are called upon to obtain readings once. In addition to
the time sequential observations, sensor data typically has constant size. For example,
the temperature and humidity data are represented by 16 bits or 32 bits for each value
stored in the database of sensor network applications [Song et al. 2009; Tan et al. 2009].

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:7

Buffer)
(ts, 74F) ———>| pwrite

40

50
1
=

Index 70
g]

80

Index Pages

Directory

Fig. 1. Index structure of MicroHash [Zeinalipour-Yazti et al. 2005].

6 12 23 || 35 Data entry pages not
yet in B+ tree
'
J
v
+ | g+ + | 1+ | 13+ + | 20* +

: ‘ﬁtlsa“‘aa‘lnl“‘ua| ‘

Fig. 2. An example of bulk loading of B*-Tree.

As the stored-by-timestamp organization always yields completely full data pages
on flash media, MicroHash [Zeinalipour-Yazti et al. 2005] proposed to store the data
records on flash by the timestamps. In this work, although the sensor data is organized
in timestamp order, the index in MicroHash is still ordered according to data value
instead of timestamp. Based on a hash scheme, index records are created for each
data record when the write cache is full and flushed out to flash, as illustrated in
Figure 1. Obviously, such a value index cannot directly support temporal search. To
facilitate temporal search, in MicroHash, the index page is designed to contain a fixed
number of index records and an 8-byte timestamp of the last known data record. Since
each data record needs an index, it is easy to fill up SRAM and when it gets full,
index pages have to be forced out to flash by an LRU policy. In order to maintain this
value index structure for temporal data storage, several issues need to be considered:
(1) the overhead for the maintenance of the index structure such as the directory and
repartition strategy; (2) extra CPU power and memory to run the LRU policy, and (3)
the cost incurred when it has to scan all pages in flash storage for a query-by-time.

The other way to build the index for temporally ordered sensor data is to directly use
timestamp as the key and create a tree-based index data structure, for instance, B*-
Tree. Since the data are organized in temporal sequence, this kind of index structure
build-up process is the same as the third step of the bulk-loading algorithm for creating
a BT-Tree index on an existing collection of data records [Ramakrishnan and Gehrke
2003]. In order to keep the balance of the tree, the rightmost index node above the leaf
level has to be split every time as the ordered data records are inserted that leads to
a full index node. Figure 2 illustrates the index tree for bulk loading of a two-order
B"-Tree. As splits only occur on the rightmost path from the root to the leaf level, if
we store this index structure on flash, as the tree grows, the previous non-leaf index
nodes along that path will need to update the index pointer values (such as the page-id
of a flash page), as shown in Figure 3. Thus, these updates will lead to large rewrite
costs and garbage due to the specific write-once property of NAND flash. Besides, the
frequent erase operations will shorten the flash lifetime.

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:8 H.Lietal

The updated path

Data entry pages not
yet in B+ tree

Fig. 3. Example of bulk-loading update of B™-Tree.

Table IIl. Terminology

Block | Contains a few pages, is the smallest unit for erase operation.

Page | Isthe smallest unit for write and read operation.

File An abstraction to store, retrieve and update a set of sensor data records. It
can be defined as by the page size of flash.

Log Each file has a log that can be used for identifying that file and positioning
the file location.

In summary, the flash storage system should cater to the needs of time-series sensor
data, in order to best support time and time-based range queries, so that the expensive
flash I/O operations are avoided or minimized. How to build an index that can alleviate
the impact of the data pattern and, at the same time, effectively support both time-
based and value-based queries is a problem we consider in this work.

2.2.2. Resource-Aware Design. In order to reduce the main memory footprint, the file
system should maintain most of its index structure on flash [Nath 2009]. However, the
NAND flash has a nonrandom read characteristic and longer access time [ATmel 2001,
Samsung 2014; Toshiba 2003]. Therefore, it is better to place all or at least part of
the index in the main memory in order to improve the performance. But, the memory
capacity of typical sensor platforms is very limited, thus, for a flash with large storage
capacity, keeping all the index in memory is impractical. Considering a log-structured
indexing system on flash with log and file defined as in Table III, we have the following
result.

THEOREM 2.1. Given K bytes of main memory and M bytes of NAND flash memory,
if the file size is L bytes where L is designed to be an integer multiple of the NAND
flash page size due to the special read and write characteristics, for a log-based indexing
structure for this file system, the largest number of logs that can be stored in the main
memory is C = L%J.

Proor. Suppose each file needs a log, the number of logs to be stored in the main
memory is : @ = M/L. Since each log must at least contain the critical information for
identifying that file and an address to distinguish the specific location of that file in the
whole address space, the smallest log can be defined as: log =< key, address >, where
key refers to some unique data property and address denotes the location. According to
information theory, if we visit @ logs with equal probability, we need W = log @ bits for
the address space. Since each key in the log is unique, we have the same number of keys
as the addresses. Thus, it at least needs the same number of bits for addressing keys.
That means the total bits for one log is at least 2 * W, so the maximum number of logs

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:9

that can be stored in a K-bytes main memory is C = [(Kx8)/2+« W)| = [4*xK/W| =
4% K/log(M/L)|]. O

For example, a sensor platform has 128 KB main memory and 128 MB flash, if the file
size is 512 bytes, according to the preceding theorem, it can store at most 29127 logs

(C = | igiimbnsis) = lgazeisi s) = 29127). On the other hand, for a 128MB

NAND flash with 512 bytes/page [Toshiba 2003], if one page is to be a file, it will need
256K logs to represent the file information. Obviously, it is impossible to place all logs
in the main memory, due to the limited available memory of sensor platforms.

Given a certain amount of main memory, how to design a feasible index structure
to sustain a large flash storage is another key problem that will be addressed in this
work.

2.2.3. Energy-Efficient Access. Efficient access to sensor data from a wireless sensor
network has been the focus of systems such as TinyDB and Cougar [Yao and Gehrke
2002; Madden et al. 2005], where users input queries at the server in a simple, SQL-like
language that describes the data they wish to collect and how they wish to combine,
transform, and summarize it [Gehrke and Madden 2004]. As pointed out by Gehrke
and Madden [2004], those queries are high-level statements of logical interests, thus
the database system or file system on sensor nodes should be able to collect, store,
and access satisfied data. Although query language design and query optimization are
important problems, they are out of the scope of this work. In this article, we consider
the same queries as defined in MicroHash [Zeinalipour-Yazti et al. 2005]. They are
listed next.

Time-Based Equality Query Q(t, t1). Find sensor data records with timestamp ¢ = #;.

Time-Based Range Query Q(t,t1, tz). Find sensor data records with timestamps in
the range of [t1, to].

Value-Based Equality Query Q(v, v1). Find sensor data records with value v = vy, for
a specific sensor attribute.

Value-Based Range Query Q(v, v1, v2). Find sensor data records with values in the
range of [vq, vo], for a specific sensor attribute.

Suppose sensor data records are stored on flash at the time when the sensor node
senses the environment. In order to support efficient assess to the data of interest,
we need to create index entries pointing to the respective data records on flash. As
discussed before, sensor platforms have very limited energy budget. Therefore, the
design of the index structure should not only be memory aware, but also be able to
ensure simple and energy-efficient index operations, in order to achieve energy-efficient
data access on flash.

3. OVERVIEW OF TL-TREE

In this section, we first discuss the logical and physical structure of TL-Tree. The basic
operations such as load-in, insert, and delete will then be presented. Finally, we address
the issues on how to extend the standard TL-Tree to support value -based indexing.

3.1. Basic Components of TL-Tree

3.1.1. Logical Structure of TL-Tree. Suppose a sensor device is installed with a raw flash
that has B = By, Bo, ..., B, blocks, each of which contains a number of consecutive
pages, that is, the smallest write/read unit. The platform is associated with a set of
on-board sensors, such as temperature, humidity, etc. Every time when the readings
are obtained, a data record is generated as d = <t, vy, v, ..., v,>, where ¢ denotes
the timestamp and v; is the value observed by the i*” sensor. Here, we assume that
the readings from different sensors are acquired simultaneously with constant size at

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:10 H.Lietal

200, 400y 600
o)

Root tree stored

in main

memory

Full sub tree
stored in NAND
flash sub tree

The raising tree

index area is not balanced
and it is stored in

main memory

Fig. 4. The logical structure of TL-Tree.

the moment when the reading event is triggered. All these records will be organized
in order by timestamps on the consecutive available pages of flash. Let one page be
abstracted as a file, the data file size equals to the size of one flash page.

Let one file have the relevant log information. Since all sensor data are organized
on flash by timestamps and timestamps are monotonically increasing as the time goes
on, we set log to be a two-tuple: log; = <time, address>, where time is the temporal
tag associated with the last timestamp of the sensor data stored in the itk file and the
address refers to the flash page address where the data belongs. If each block has n
pages, then we will have m x n logs. As analyzed in Section 2.2.2, it is impossible to
place all logs in the main memory for directly indexing the data. Here, we will design a
tree-based index structure for indexing the log information when the sensor readings
are stored on flash. This structure is called temporal-log tree (TL-Tree).

According to the structure and where the index nodes are stored during the con-
struction course, TL-Tree is composed of three parts, namely, root tree, raising tree,
and subtrees, as shown in Figure 4, where root tree and raising tree are stored in the
main memory and subtrees are stored on flash. The entries on the leaves of both raising
tree and subtrees contain two fields: a temporal index key and the page address of data
records on the flash. Each entry of the root tree also contains two fields: an index key
and an address pointer to the page address of a subtree. So in general, all entries have
the same structure as the log: < key(time), address >.

Entries are added to a TL-Tree in the following two ways: (1) the key index of the
temporal log for each new page is added to the raising tree, if the raising tree is not
full; (2) once the raising tree becomes full, it will be pushed out to flash and an index
entry is added to the root tree. This process proceeds until the root tree is full.

Since a TL-Tree need not be balanced, no split is required as data records are gen-
erated and stored in temporal sequence in flash. For the previous example of the bulk
loading of B*-Tree, the TL-Tree for the same data records of Figure 2 is shown as in
Figure 5. As new data records are added to the system, only the raising tree grows, as
illustrated in Figure 6. If the raising tree is full, the root tree may need to grow also,
as in Figure 7. But the growth of the root tree will not cause the overhead of splitting
and changes of the relevant TL-Tree index nodes along the path, as in the bulk-loading
B*-Tree.

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:11

Raising tree
Data entry pages not
yetinTL-tree

\
1

\
N
i
1
,3*‘4*‘6*| ‘9* ‘10*‘11*| ‘12*‘13*‘20*[‘\,’ 22*‘23*‘31*‘ ‘35*”36*‘38*‘ ‘41*‘44"
]

Fig. 5. The TL-Tree (compared to Figure 2).

Data entry pages not
yetin TL-tree

L]
i
i

20* |\
)

— |

3%

a*

6*

9*

10*

11*

‘ 12*

13*

22*

23*

31*

‘ 35%

36*

38*

a1*

a4*

Fig. 6. TL-Tree update (compared to Figure 3).

Fig. 7. TL-Tree update and root tree growth.

3.1.2. Physical Storage of TL-Tree. When the system is in operation, the main memory is
divided into two areas that include a TL-Tree area and an area for other applications,
as shown in Figure 8(a). In order to optimize the use of the memory in the TL-Tree
area, only the time logs of the leaves of the root tree and the raising tree are stored in
the main memory, as shown in Figure 8(a), while the time logs of other full subtrees
are stored in the NAND flash. We denote the in-memory area where the time-log index
of the root is stored as root-tree index array and the place the time-log index of the
raising tree is stored as raising-tree index array.

Since the main memory is very limited, in order to avoid the overhead introduced
by the index nodes, we design an efficient online algorithm (discussed in Section 4) to
build the logical tree structure when needed during the runtime. Hence, there are no
physical internal tree nodes stored in the memory.

Suppose the main memory size is C, the number of logs in the root-tree array is S,
and in the raising-tree array is S, then we have S, + S; < C. Since the total number
of logs that the whole index tree may have is S,, = S, xS, according to the Geometric-
Arithmetic Mean Inequality Theorem, when S, = S, S,, will have the biggest value.

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:12

The root tree index
array

The raising tree index
array

Read, write, cache

Other
apps

TL TG area

(a)TL-Tree in the main memory

.
Root tree and | sub !

sub

sub

raising tree
index array

tree 1 3 data area
index

tree 2 3 data area
index i

i
i
| treen ! dataarea

'
index !

System area

N

sub tree 1

Y
sub tree2

sub tree n

(b)TL-Tree in the NAND flash memory

Fig. 8. The storage structure of TL-Tree.

In other words, when S, = S;, C has the minimum value. So if we want to minimize
the space usage of the main memory, the number of root-tree logs should be equal
to that of the raising tree. For example, for an 8G NAND flash with 4M pages, if we
store one file per page, then we will have 4M logs. In this case, we can build a 2K/2K
root/raising tree for indexing the 4M logs, which only needs 4K logs in-memory space.
Since each log needs 6 bytes to denote the time and the address?, the total memory
used for indexing an 8G NAND flash is 24K bytes. This means that, using this cascaded
time-log index tree, MicaZ is able to sustain an 8G NAND flash, which is enough for
supporting most in-networking applications for sensor networks. Compared to other
existing log-structure indexes [Lim and Park 2006; Aleph One 2001; Woodhouse 2001]
that store the whole log information in the main memory, TL-Tree can effectively
reduce the use of the main memory and at the same time support a large NAND flash
capacity.

In NAND flash, the storage area is divided into the system area and the subtree
areas, as shown in Figure 8(b). The system area stores the corresponding TL-Tree area
information from the main memory when the system is turned off normally. So when
the system is turned on, this area should be loaded first. For simplicity, the system
area is designed to be one block of the NAND flash in our system. Each subtree area is
constituted of a subtree index area and a data area. The subtree index area is used to
store the subtree index logs when the corresponding raising tree is full. The data area
is used to store the temporal sensor data.

3.2. Basic Operations of TL-Tree

In this section, we first describe the basic load-in, insert, and delete operations. The
time-based and value-based lookup will be discussed in Section 4.

3.2.1. Fast Load-in. When the system is turned off, the in-memory index information
will be stored back to the flash system area, so when the system is turned on, it can
load these information to the main memory directly. Because it does not have to scan
the flash pages like the other log-structured file systems [Lim and Park 2006; Aleph
One 2005], this structure will save a lot of time and power.

If the system is turned off due to an abnormal situation such as an unexpected
power failure, these in-memory index information cannot be written back to the flash.

2logéM = 22 bits are needed to address all 4M pages, and since MicaZ uses 8-bit CPU, 24 bits
(3bytes) are needed for a page address, and the other 3bytes for the time of a file.

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:13

Table IV. The Insert Operation

Input: log E < time, address >
log number stored in raising tree array: SubNum
log number stored in root tree array: RootNum
1: Let RaisingTreeArray[SubNum] = E;
2: SubNum = SubNum + 1;
3: if SubNum is bigger than log num. limit of one subtree
4: then
5: remove the RaisingT reeArray to flash;
6: SubNum = 0;
7.
8
9

RootTreeArray[RootNum] = E;
RootNum = RootNum+ 1;
: if RootNum is bigger than log num. limit of root tree
10: then call Delete[offset].

In this case, the root tree can be reconstructed by scanning each subtree index area in
subtree areas, and the raising-tree index can thus be reconstructed by scanning the
corresponding subtree data area.

3.2.2. Temporal Sequence Insertion. Due to the specific write characteristic of NAND
flash, a write cache is used to load the data before they are written to the flash. Here
the write cache has to be at least twice the file size so as to improve the write efficiency.
When the cache is full, the system will first move the sensor data, including the value
and the time, from the cache to the data area of the flash, and then start the insert
operation for the TL-Tree.

For the insert operation, a log is first generated and then inserted into the raising
sub-tree array if the raising tree is not full. Once the raising tree is full, it will move the
index information of this raising tree to the corresponding subtree index area of flash,
and add one log to the root-tree index array. If the root tree is full, it will then call the
delete operation that will be discussed next to delete the oldest subtree; otherwise, the
insert operation is complete. The detailed steps of the insert operation are illustrated
in Table IV.

3.2.3. Oldest Subtree Deletion. In order to simplify the operation and keep the logical
structure, the root-tree index array is stored in a round-robin queue with an offset
variable pointing to the location of the oldest key. Initially, offset = 0. When the flash
is full, we need to first delete the oldest subtree area from the flash memory and then
delete its corresponding index in the root tree, and set offset = offset + 1.

For instance, in Figure 9(a), the root-tree of a TL-Tree has fanout = 4 and level = 2,
where offset = 0. Now, the flash memory is full and we need to delete the oldest subtree
pointed to by the key 10. What we shall do is to delete key 10 in the root-tree array in
the main memory and set offset = offset + 1. If at this time a new subtree is generated
with index key of 85, then 85 will be inserted to the root tree at the physical location of
the deleted key 10, as shown in Figure 9(d). But since offset = 1, from a logical point of
view, the tree keeps the shape as before the deletion but shifts one location to the left,
as shown in Figure 9(c).

In order to avoid out-of-place updates, the subtree size is designed to be an integral
multiple of the block size of the flash, since the whole block is expected to be deleted
whenever needed. This is a necessary and sufficient condition for out-of-place update
avoidance of TL-Tree. Otherwise, for instance, if the subtree size is one-and-a-half
times the block size, then every time when we erase the oldest subtree, we will have half
a block of valid data that need to be moved. As we know, each block normally contains

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:14 H.Lietal

[IIO. 15, 20, :Is] 30, 33, 40, .iISJ [-II9- 5lls5§; 6?] [6?. 'ﬂl). Tlﬁ. S.OJ
TR TR T EEEEE

(a) the root tree logical structure before deletion

20
offset=1

25

|1o|15 30|33|40|4s|49 51|5s 65|6?|TD|?6|80|

(b) the root tree before deletion

[1|5s EID’ 2|5.3|‘|]] 3,41), . 4|9 [5|155|5s6'5s6|7] [T‘I)s TF’SP,B?]
A [i¢4i¢] T T

(c) the root tree logical structure after deletion and insertion of 85

|ss|1s 20 |25 30|33|4D|45|49|51|55|65|67|TD|76|80|

offset =1

(d) the root tree array after deletion and insertion of 85

Fig. 9. A running example for deletion and insertion.

an even number (2") of pages and several pages are used for storing the subtree
index3. Since the page is the smallest write/read unit, we should set the file size to
be an integral multiple of a page. After taking out the pages for subtree indexing, we
cannot always guarantee the full utilization of the pages on a block if the file size is
some integral multiple of a page (for the previous example that has 32 pages a block
and 4 pages for a subtree index, if the file size is to be 3 pages, in this case one page
of this block will be left empty since 28 cannot be evenly divided by 3). To this end, we
simply set the file size of TL-Tree to equal one page. Together with the subtree setting
condition, it is easy to see that TL-Tree will never need to implement out-of-place
updates and a garbage collection strategy; at the same time, it can fully make use of
the flash capacity for data storage.

3.3. Value-Based Indexing Structure

In sensor applications, queries may arise that are not time based but value based, for
instance, “SELECT nodeid, nestNo, light FROM sensors WHERE light > 400 EPOCH
DURATION 1s”, or “SELECT AVG(sound) FROM sensors EPOCH DURATION 10s”,
etc. [Madden et al. 2005]. It is easy to extend the basic TL-Tree index structure to
accomplish value-based queries.

3How many pages are needed for the subtree index is dependent on the root/raising tree in the
main memory, for example, for the 2K/2K example in Section 3.1.2, if one page is 512 bytes, then
there are 4 pages used for a subtree index on a subtree area in flash.

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:15

root tree, | sub sub tree 1 | data sub sub tree 2 | data sub sub tree n | data
raising tree | tree 1| value area tree 2| value area tree n | value area
index array index | index index index index index
/
~ ~

system area subtree 1 sub tree 2 sub tree n

Fig. 10. The value-based subtree in flash.

min_valug 1 pageld, | max_valug, pageld,, | max_value,,

pageld,, | max_value, pageld,, | max_value,

min_value, 1—»| pageld, | max_value, pageld,, | max_value,,

Fig. 11. The value index for a subtree.

We combine the temporal index and the value index by exploiting the observation
that pure time-independent value-based queries are unrealistic in sensor applications;
rather, a value-based query asks for data that matches a condition over the value in
a particular time window. Suppose the flash size is M, one page size is P, and one
subtree size is S. First, we assume that there is just one type of sensor data, such
as, temperature data, stored on the flash; we will discuss the solution for multiple
data types next. For each page, max_value (min_value) is used to record the maximum
(minimum) value of all data stored in this page, and pageld refers to the address of
this page (from 1 to [M/P7). For each subtree, through the process of establishing the
subtree index introduced in Section 3.1.1, at the same time we construct a value index
by storing the Max/Min properties in the second page of the subtree while keeping
the temporal index in the first page. Thus the new TL-Tree in flash memory would be
changed to the structure shown in Figure 10.

The details of the value index structure are shown in Figure 11. Every element of
this structure is composed of a tuple-(key, value), where key is the min_value of all the
data in each page and the keys are ordered in ascending order. The value is a linked list
that contains the pageld and max_value of the relevant pages. In addition, this linked
list is ordered by pageld in ascending order. This means all pages that have the same
min_value will be located within the same linked list.

4. EFFICIENT LOOKUP OPERATION

The purpose of lookup is to search for the sensor data that is queried by the applications.
In order to improve the access performance for readings that possess temporal locality,
a read cache is used in the main memory and the simple FIFO paging algorithm is
adopted. Initially, the cache is empty and, once lookup obtains the location of the first
wanted page in NAND flash, this whole page is moved to the read cache.

4.1. Search by Time

According to the place where the sensor data are stored, the possible locations for the
queried sensor data or the corresponding index are read cache, raising tree, and root
tree. The detailed steps for the retrieval of the data are illustrated in Table V.

If the data is found in the read cache, this operation returns the value; otherwise, it
is required to compare the queried time T with the earliest time of the raising tree. If
T is bigger, the raising-tree index array is searched. If the queried time log is found, it

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:16 H.Lietal

Table V. The Lookup Operation

Input: the queried data time of T

: Search the read cache;

. if have T then return;

: compare T with the earliest data time of raising tree;

:if T is bigger then /I T is in the raising tree

address = T ST, X, 0, subnum, RasingT ree Arrayl;

move address page from flash to read cache;

return;

:subadd = T SIT, X, of fset, rootnum, RootT'ree Array];

: Load the subadd pointed subtree to memory and call the search algorithm again
to obtain data file address, and then move that page to read cache.

© TP U A WN

does not need to visit the flash any more. As discussed in the previous section, there
does not exist a physical tree, so at runtime the operation will call the TreeSearch
algorithm to search for the raising-tree index array in the main memory in order to
obtain the flash page address that contains the queried sensor data. Here TreeSearch
is an efficient algorithm that can imitate the logical index tree construction.

If T is smaller, which means the queried log is not in the rasing tree, we have to search
the root-tree index array in the main memory to find the subtree index page address
obtained by the TreeSearch algorithm. Upon the receipt of the address, since the whole
tree index is stored in the flash, it can first move the root level of the subtree from
flash to the main memory and then compare the time logs to obtain the page address
in the next level of the tree. This process will proceed until reaching the leaf level of
the subtree index to eventually get the page address of the sensor data.

The key point of the TreeSearch algorithm is to compare the queried time (index key
value) with the keys in the virtual logical index tree, from the root node to the leaf-level
nodes of that tree. The output is the corresponding flash page address. As shown next,
this special property can save a lot of main memory, a highly limited resource on sensor
platforms. The details are illustrated in Algorithm 1.

THEOREM 4.1. Let us consider the root tree (or the raising tree, a loaded-to-memory
subtree) of a TL-Tree, if the fanout number is X, compared to the method that stores the
full index tree in main memory, the TreeSearch algorithm can reduce the space by about
1
=100%.
b'¢

Proor. Suppose the tree has height of H, if we keep the whole index tree in main
memory, the space utilized for storing the tree will be Zfi X =Xx1-X0)/01-X.
Since TL-Tree only needs to store the logs of the leaf-level nodes, the space cost
of TL-Tree will be X¥. Therefore, the total memory space will be reduced by

Xx(1-X1)/a-%-Xx7 _ (X-X")0-X _ 1-XH! ~ (1
X+(1-X0)/1-X — X=(1-XH)/1-X) = (1-XH)100% ~ (7()100%. o

When the fanout is small, the benefits are considerable. For instance, if the fanout
is 4 and the height is 6, which is the root tree we use in the TL-Tree in the MicaZ for
128M NAND flash, the total memory for the index structure is reduced by about 25%.

Except for the index array IndexTree itself, there are four arguments to the algo-
rithm. The additional space for the data retrieval of the logical TL-Tree is six that is
used to store the local variables of the algorithm. Therefore, the space complexity of
TreeSearch is O(1). Also, it is easy to see that the time complexity of this algorithm is
O(H x X), H = |logyx N |, namely, the height of the tree.

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:17

Table VI. The Value Lookup Operation

Input: the value range and time range of the queried data (vy,vg,t,t2)
: start address sAddr < search by timestamp t1;

: end address eAddr < search by timestamp to;

: start subtree Id; < [sAddr « P/S] ;

: end subtree Idy < [eAddr x P/S7;

: whileld; <= Id; do

ValueTreeSearch lindex — value, sAddr, e Addr, v1, val;

Id, < Id; + 1,

sAddr < the first pageld in subtree(/d;);

: end while

© 0T DU AWN

ALGORITHM 1: TreeSearch Algorithm (TS)

Input: queried time 7', fanout X, offset, number of elements in the array N, the array I[].
Output: page address A in NAND flash.
H =|logxN]; j = H; p=0; /* j: height; p: pointer to the node containing T'
repeat
Jj=J—1;i=1; /*i: current key comparison location

repeat
if (T <= I(offset + p* XUtV +i x X/ — 1)modN].time);
then
p =1i; break; /* find the key
end

i =1+ 1; /* not find the key
until ; < X /* inside a node;
until j > 1/* for non leaf nodes;
k = 1; /* k: current comparison location in the leaf node
repeat
if (T <= I[(of fset +k+ (p — 1) x X! — D)modN].time);
then
A=1I[(offset + k+ (p — 1) %+ X) — 1)modN].link; /* find the key, return the address
return A;
end
k=k+1;
until 2 < X /* if k is within a node;

4.2. Search by Value

We presume that the value-based queries are specified as follows: query the data x
in the time range [¢#1,f2] (o > #;) whose value is greater than v; and less than vs
(v2 > x > v1). Detailed retrieval steps are shown in Table VI and Algorithm 2.

For time range [, 2], we first obtain the corresponding page address, that is, sAddr
and eAddr, calculated by the TreeSearch algorithm. We hence query data in a reduced
space from page with Id from sAddr to e Addr, that is, from subtree Id; = [sAddr* P /S
to subtree Idy = [eAddr = P/S], instead of the whole flash. Then we can use the value
index in subtrees from Id; to Idy to access the target data. We infer that if one page
has the eligible data, its min_value must be less than vy and max_value must be greater
than v;. We traverse the linked list for each min_value key if it is less than v, to find
a page that contains data that satisfy the condition. Once a page is found, it will be
read into the cache and the lookup operation continues for eligible data in the following
pages.

As we know, the sensed data can be of different types, such as temperature, hu-
midity, motion, etc. Although in the preceding solution we only store/index a single

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:18 H.Lietal

.
Value
00,/
r Index 1
- Temporal
Root -~ 01, . P
Index | * Value Sensing Index
N, Index 2 Data
10
4 Area
Value
Index 3

Fig. 12. The complete value and temporal index structure.

ALGORITHM 2: ValueTreeSearch Algorithm
Input: value-index of subtree, sAddr, e Addr, v, vs .

1 =1
repeat
if (min_value; <= vy);
then
J=0;
repeat
if (sAddr <= pageld;; <= eAddr) A (max_value;; <= vs);
then
read the page with pageld;; to read cache;
end
J=Jj+1
until j < end_of _page list,;
end
i=i+1

until i < n;

value, it is easy to extend this structure to support multiple-value indexing. For
instance, we can store different sensed data in flash by the type as in sequence
[temperature, humidity, motion] if they keep the same sensing period, or just by tem-
poral order for different sampling intervals. Then we can build a simple virtual root
index to point to the different types. That is, in this specific example, we only need 2
bits to indicate the temperature, humidity, and motion data, as shown in Figure 12.

The flash is thus divided into three parts: temporal index, value index, and sensed
data part. The value index part uses type index area to first differentiate sensor data
types, where each type index structure is the same as in Figure 11, but with different
values. In this example, area one points to temperature, two points to humidity, and
area three points to motion. Every part can index all the data, similar to the temporal
index. Given a value-based query, the index system will first choose one index area in
the value index part according to the query type and then proceed with the retrieval
process as described before.

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of TL-Tree in terms of energy efficiency
and access latency. We build an emulator for a MicaZ/Iris sensor board configured with
a customized 128MB raw NAND flash chip (512 bytes per page and 16K bytes block
size) as in Mathur et al. [2009], the energy cost and read/write time adopted here for
the main memory and flash are the same as in ATmel [2001], Mathur et al. [2009], and

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:19

Table VII. Operation Cost on Memory and Flash

Symbol Definition Value
T main memory read time 45 ns/byte [ATmel 2001]
T, main memory write time 2 ps/byte [ATmel 2001]
T, access time of NAND flash 20us/ page [Toshiba 2003]
T, NAND flash write time 200us/ page [Toshiba 2003]
E, main memory read energy 0.26 . /byte [Mathur et al. 2009]
E, main memory write energy 4.3ud /byte [Mathur et al. 2009]
E, NAND flash read energy 2.05u/ page [Mathur et al. 2009]
E, NAND flash write energy 4.61uJ/page [Mathur et al. 2009]

Toshiba [2003]. Table VII illustrates the symbols and relative cost values used for the
evaluation.

The emulator is able to count the number of lookup (read) and insert (write) opera-
tions performed on main memory and NAND flash so that the energy and latency cost
can be calculated accordingly. For simplicity, the subtree index is designed to be equal to
one page size of the flash. Let M denote the NAND flash size, L be the data file size, ac-
cording to the analysis in Theorem 2.1, each time-log sizeis S = 2 * W = 2 x log (M/L).
If we denote P as the flash page size, then for each page, the total number of logs
is [P/S]. Since the size of each subtree index is one page, each subtree index has
[P/S] logs. Therefore, the root tree has [M/([P/S] * L)] subtrees. For example, for the
preceding system, if each file contains 512-byte data, each subtree will have 64 pages
(512/(2 % log (128M/512))), and the root tree has 4K subtrees (128M/(64 x 512)). We
adopt these settings for the experiments conducted in this section.

5.1. Energy Consumption Calculation

The target data for a query can be located in three places: (1) read cache, (2) raising tree,
and (3) NAND flash, so we define five variables: count_read_cache, count_write_cache,
count _rasing, count _root, count_flash, and count_other to describe the number of com-
parison times at each place. The value of each variable can be calculated as follows.

Case 1: Cache hit. Cache hit means the queried data is located in the read cache, thus
count_read_cache = 2 since we only need to compare the data value to the minimum
and maximum key value of the read cache. In this case, other variables are equal to
zero. (Note here, we only consider the comparison to tell whether the data is in the
read cache and do not count the energy consumption for further locating steps.)

Case 2: Raising-tree hit. The data found in the raising tree means we have confirmed
it is not in the read cache. There are two possibilities: (1) if data is smaller than the
first key in the cache, then count_cache = 1; (2) otherwise, we need to compare with
the first and last keys in the cache, and count_cache = 2. The count rasing equals the
comparison times by the execution of the TreeSearch algorithm for the raising tree,
count_flash is 1 (locating the data address on flash pointed by the raising-tree leaf
node) and count_write_cache is 512 (to read and load the corresponding page containing
the target data from flash to read cache).

Case 3: On flash. If we figure out that the data is not in the read cache and raising
tree, here the count read_cache is 1 or 2 and the count _raising is 1 (for comparing to the
smallest key of the raising tree), then we need to search the root tree area to find the
subtree index that points to the target data page. In this process, count_root refers to
the comparison times by TreeSearch algorithm performing over the root tree. If we find
the relevant subtree, the subtree is read to search cache so that count_flash is 1 (the en-
ergy is the same as for the read cache since both are in RAM) and the count_write_cache
is 512. Next, we need to search the subtree to find the page address of the target data,

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:20 H.Lietal

and count _other is for recording the comparison times by the TreeSearch algorithm.
Finally, the target page is brought into the read cache; until now count_flash is 2 and
count_write_cache is 512 x 2.

In general, the aforesaid calculation for energy consumption of a query can be sum-
marized as follows.

EnergyCost = count_read_cache * size_of (data) x E,, + (count rasing + count_root +
count _other) x size_of (data_log) * E,, + count_flash x E, + count_write_cache * E,

Let us look at the example shown in Figure 6, and the query is Q(¢, 36). We assume
that the data timestamp in the read cache is from 10 to 13, then we need to compare
twice to figure out that the queried data is not in cache. After comparing with 22, that
is, the smallest key in the raising tree, it is confirmed that the key can be found in the
raising tree. So, the TreeSearch algorithm is called to find the location of Key = 36 (it
needs 4 comparison times in this example). Finally, the flash page is read and loaded to
cache. The total energy consumption is EnergyCost = 2 x 16byte * Em+ 1 x 8byte x Em +
4 x 8byte * Em+ 1 % En 4+ 512 x 4.3ud = (32 + 8 4+ 32) % 0.26 + 2.05ud + 2201.6ud =
2222.37Tud

Similarly, the time cost for each query can be calculated using the following formula.

Timecost = count read_cache * size of(data) * T,, + (count_rasing + count_root +
count other) * size_of (data_log) * T, + count_flash = T,, + count_write _cache x T,.

5.2. Temporal Data and Query Settings

In this experiment, we generated two sets of synthetic data with different temporal
patterns for data arrival intervals: one is with constant period to mimic the sensor data
sampling rate under a normal situation, and the other uses a Poisson process to model
the event-based sensing environment. The constant period is set to 1s. A is set to 0.5
and 0.02 to distinguish two scenarios where the expected value of the interval between
two arrivals is 2s and 50s, respectively.

We conducted tests with two different benchmark workloads: random-time lookup
and time-range lookup, to evaluate the TL-Tree for the previous data arrival patterns.
Each operation specifies a 6-byte integer key and the number of data items is 8MB. In
the figures, each value is the average of 100 experimental results.

For a random lookup operation, like the experiments conducted in Agrawal et al.
[2009], the workload consists of a sequence of a random mix of updates (insert opera-
tions) and lookups with a given Lookup-To-Update ratio (LTU) that ranges from 20%
to 180%. The queried time points are randomly distributed in the temporal range of all
sensor data records.

For a time-range lookup, the queries are generated to read all the records with
timestamps within a time window [¢;, t; + length], where ¢ is uniformly distributed in
the index range. Since all sensor data are temporal, the length refers to the time range
of the search and is varied from 2000 to 30000. Here, we test the ranges incremented
with 100 in [2000, 10000], and then increase with 5000 in [10000, 30000].

5.3. Evaluating Cache Impact

5.3.1. Cache Hit Rate. In TL-Tree, our design uses FIFO as the page replacement al-
gorithm for the read cache since it is a low-overhead algorithm that requires little
bookkeeping work (O(1) additional amount of work per page replacement), and it is
not a marking algorithm so that it does not need to pay an extra maintenance cost
for marking the pages in cache. Although the paging strategy is out of the scope of
this work, we still conducted experiments to show the cache-related properties in the
context of the TL-Tree structure.

For a random query, Figure 13 illustrates the cache hit rate for a data sequence with
constant arrival interval and Poisson distribution (A = 0.02), respectively. We noticed

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:21

7 7 . . .
] G\e/e__e/e\e/e\e/o . W
~5 3° | 24K o-oK]
° < 1K =B 2K —A— 4K —O- 8K
s [F7=1K 8- 2K 24K -0 8K] s =
L4 24
5 &
o3 © 3
< <
5] %)
© ©
o, o,
11—V vV T Vv v
0 0
0 50 100 150 200 0 5 100 150 200
Lookup to update ratio (%) Lookup to update ratio (%)
(a) for constant interval (b) for Poisson distribution
Fig. 13. Hit rate for random-time query.
97.2 98.5
98
e 1K 2K 4K 8K
97.5
R o7 X 97t
%. =
b T 96.5
= =
= = |
= s %
= £
[*] o
8 96.8 g 95.5
95
94.5
96.6 94
0 2 5 10 15 20 25 30 02 5 10 15 20 25 30
Length of time range (X10°) Length of time range (X10%)
(a) for constant interval (b) for Poisson distribution

Fig. 14. Hit rate for temporal range query.

that the cache hit rate is low because in this benchmark the queried data are completely
random and there is no connection between any two queries. Also, we found that cache
miss traffic decreases when cache size increases.

The relationship between the read cache locality and the hit rate for the temporal
range access is shown in Figure 14. We observed that the hit rate is very high for
both sequences. In this benchmark each query looks for data records within a temporal
range. For example, if we need to query data between [3000,5000] time range for a
constant data interval model, we only need to find the page address that contains
3000, then read the sequential flash pages to the read cache until the maximum time
in the page is bigger than 5000. We know one page contains 32 data (512 byte/page,
data size = 16 byte), therefore, we need to read (5000 — 3000)/32 ~ 63 pages and only
the first data in one page is needed to be read from flash, while the other 31 data values
are already in the read cache. So the cache hit rate is about (2000 —63)/2000 ~ 96.85%.
From Figure 14, it is not surprising to see that the cache hit rate is almost the same
for different cache sizes, since: (i) the cache size is relatively too small, and thus

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:22 H.Lietal

1880

4000

ool V7 ¥V Vv
B——"——E/B_E\E/H/B\ﬂ

By SC

[1K & 2K -A- 4K e-8K]

1870

1860, p—E—a T o~ g

1850

1840 A\A\A\kA/\/H

1830

3900

1820 3850

[1K 8- 2K A-4K -0-8K]

1810

Avg. time cost of lookup (us)
Avg. energy cost of lookup (uJ)

1800

1790 G\s_e\e/e_e/e__e__e 6\9—6\9_6_9,9—9—4

[
-]
o
=]

1780 3750
0 50 100 150 200 0 50 100 150 200
Lookup to update ratio(%) Lookup to update ratio(%)
(a) average access time (b) average energy cost

Fig. 15. Random lookup on constant period.

18%0 W 4000

1870
~ 1860 B/E\B_E/E_E\B——E_ﬂ 5 3950 v
7] =5
& Py - S -
= 1850 g
2 S
§ 1840 W\AKA 9 3900
- k]
S 1830 % W—N(A
3 8
o
o 1820 [F7-1K -B-2K -A-4K -©-8K| & 3850
£ g [1K B-2K A4k -0-8K]
= 1810 =
2 o
< 1800 Z 3800

1790

1780 3750

0 50 100 150 200 0 50 100 150 200
Lookup to update ratio(%) Lookup to update ratio(%)
(a) average access time (b) average energy cost

Fig. 16. Random lookup on Poisson interval (A = 0.02).

has little impact compared to other issues like data organization and query patterns;
(i1) the temporal-ordered data organization and the temporal indexing structure of TL-
Tree matches the time range access pattern, which eventually dominates the hit rate
performance for range queries.

5.3.2. Random-Time Lookup. Figure 15 and Figure 16 present the average access and
energy cost per lookup operation for different workloads with different cache sizes.
Here, we only show the results a for Poisson distribution with A = 0.02, since the
results are very similar for A = 0.5. We have the following observations.

First, for each benchmark workload, the impact of the read cache on the data query
is almost the same whether the data arrival interval is constant or not. Second, for
the same workload, TL-Tree benefits from the increased cache size. This is expected
because queries are likely to find required data in the cache in direct proportion to the
cache size. Third, for a given cache size, the cost is relatively stable. This is because
the cache size is too small compared to the 128M NAND flash memory and also that
the queries generated are completely independent.

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:23

33 72

329 71.8

—1K —2K —4K — 8K

— 1K —2K — 4K — 8K

32.8 71.6

327 71.4
326 71.2

32,5 7

324 70.8

Avg. time cost of querying one data (us)
Avg. energy cost of querying one data (uJ)

02 5 10 15 20 25 30 70'60 2 5 10 15 20 25 30

Length of the time range (X1 0®) Length of the time range (X1 0®)
(a) average access time (b) average energy cost

Fig. 17. Time-range lookup of TL-Tree (constant interval).

35.5 78

77.5

35 —IK—2K—4K—8K 77 — 1K — 2K — 4K — 8K

76.5
345 76
75.5

34 75

33.5

Avg. time cost of querying one data (us)
Avg. energy cost of querying one data (uJ)

330 2 5 10 15 20 25 30 02 5 10 15 20 25 30

Length of time range (X1 0o) Length of time range (X1 0o)
(a) average access time (b) average energy cost

Fig. 18. Time-range lookup of TL-Tree (1 = 0.5).

5.3.3. Time-Range Lookup. Figure 17, Figure 18, and Figure 19 illustrate the cache
performance for the range queries. We first observed that, as the query range increases,
TL-Tree performance improves dramatically. The benefit comes from the time-based
index structure and the high cache hit for sensor data with high temporal locality. Also,
for a specific data arrival pattern, different cache sizes have very limited impact on
the performance. This is because only the first and the last data need to be allocated,
and other in-between data can thus be loaded into the cache as needed. This holds for
different cache sizes.

Another observation is the energy consumption and access cost for queries with Pois-
son arrival intervals at . = 0.5 are vary close to those at the constant arrival pattern.
Here, we noticed that the expected time interval is 2s for a Poisson distribution at
A = 0.5 and 1s for the constant period. The results further indicate that the perfor-
mance of TL-Tree is stable and not sensitive to the data arrival distribution, because
the number of data items obtained is the major impact factor for a query range.

Finally, when the expected time interval is relatively large, for example, when A =
0.02 for a Poisson distribution, it consumes more energy compared to small arrival

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:24 H.Lietal

©

=3
]
(=]
S

-
©
=]

——1K —2K — 4K — 8K

©
=]

—1K =—2K —4K — 8K

—

o
-
=3
=3

N
B
S

-
N
(=3

3]

=)
-
=3
=3

'S
(=)

Avg. time cost of querying one data (us)
3
(=]
o

Avg. energy cost of querying one data (uJ)

60
W2 s 10 15 20 25 30 02 5 10 15 20 25 30
Length of time range (X10%) Length of time range (X10%)
(a) average access time (b) average energy cost

Fig. 19. Time-range lookup of TL-Tree (A = 0.02).

intervals if the query range is small. As the range increases, such as to 30000, the
cost becomes low as in A = 0.5. Since each page contains a fixed number of data
items, for instance, 32 in this work, if the interval is constant, then for a given range
query, say 2000, the total number of pages accessed is 2000/32 ~ 60, where the energy
consumption for each data lookup is about 60/2000 = 3/100 (it assumes one energy
unit for each page). If the expected interval is 50 (A = 0.02) for a Poisson distribution,
then only 2000/50 data items can be obtained, which occupy two pages. In this case,
the average energy consumption for each item is 2/40, about twice 3/100.

5.4. Performance Comparison

In this section, we choose a flash-optimized index structure, namely, u-Tree [Kang et al.
2007], to perform the comparison. u-Tree attempts to improve upon the Bt-Tree by
putting all nodes along the path from the root to the leaf together into a single flash
memory page in order to minimize the number of flash write operations. Although this
specific improvement of u-Tree outperforms Bt-Tree for access latency, it is designed
for generic flash devices, not the sensor platforms that store time-series sensor data.
In order to have a fair comparison, we first enhance the u-Tree to be more adaptive to
the sensor network applications, and then compare the TL-Tree to it and the original
u-Tree.

5.4.1. u(n)-Tree. According to the balanced structure of u-Tree, when the temporal-
ordered index node is full, it will split it into two subindex nodes and each node is half
full. If we use the generated time as index, all the new data will be inserted into the
right subnode, while meanwhile, the left one remains half empty—a big waste of the
index storing space. So, instead of splitting into subnodes when the index node becomes
full, we propose to allocate a new empty node to keep the new arrival keys. In addition,
each time when a new key is generated, u-Tree has to allocate a new page to load the
path from the root to this key because NAND flash does not support in-place update.
This process will, however, not only lead to large useless space in old pages, but also
lead to a lot of access operations on memory and NAND flash. In order to alleviate
this impact, we propose to use a 256-bytes buffer for the newly generated index keys
(u-Tree is designed to allocate half of a flash page to the new keys in the leaf, so the
key buffer should be designed to conform to the page size of the specific flash, here
512 bytes per page). The purpose of this key buffer is to save those new keys until

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:25

6000 12000

| [ITL-tree [u(n)-Tree [1 Tree ‘

5000 10000

[ITL-Tree M u(n)-Tree [l 1 Tree

4000 8000

6000

]
=]
P=1
S

4000

-
=3
=3
S

2000

Avg. time cost of lookup (us)
8
S
Avg. energy cost of lookup (uJ)

20 60 100 140 180 20 60 100 140 180
Lookup to update ratio (%) Lookup to update ratio (%)

Fig. 20. Random lookup.

500 1000

450 [CITL-Tree ~ 900 [CITL-Tree | |
- [u(n)-Tree| 2 [u(n)-Tree|
3400 I i tree < 80 I Tree
S 350 2 7100
$ 8
© 300 + 600

(<]
5 250 4% 500
- 173
: g
8 200 S 400
[} o
£ 150 G 300
= 5
5100 s 200
50 < 100
0 0

20 100 400 700 1000 20 100 400 700 1000
Length of the time range (s) Length of the time range (s)

Fig. 21. Time-range lookup.

the cache is full, then all the keys will be written to the flash once. The benefit of this
process is that it decreases the access times of flash memory.

In the following part, the aforesaid u-Tree-tailored index structure is called u(n)-
Tree (n implies the buffer size). The writing steps of w(n)-Tree include: (1) writing the
data to the write cache; (2) when the write cache is full, generating an index node; (3)
writing this index node to the key buffer; and (4) when the buffer is full, moving all the
nodes from the buffer to the flash memory.

5.4.2. Comparison for Lookup Operation. In this section, we only present the results for
the use of 8K read cache for the experiments. (The results with different cache sizes
are similar and hence omitted.) The results are shown in Figure 20 and Figure 21.

We observe that, in general, TL-Tree has superior performance to u(n)-Tree and
u-Tree in terms of both access cost and energy cost. For example, under the 100%
workload condition for the random lookup, the access time of TL-Tree takes only about
37% and 33% of u(n)-Tree and u-Tree, respectively. And the energy cost benefits are
similar. This is because both -Tree and u(n)-Tree are stored in flash memory. If the
data is not found in cache, this kind of storage organization will result in many accesses
to flash. Although u(n)-Tree is an improved tree, its logical structure is the same as
that of u-Tree.

For the case of time-range lookup operation also, the TL-Tree outperforms the other
two trees. Because the data stored in the subtree area of TL-Tree is based on time

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:26 H.Lietal

Table VIII. Insert Cost Comparison

Index Structure Time(us) Energy(ud)

TL-Tree 38.86 70.05
u(n)-Tree 43.69 80.31
n-Tree 300.55 617.48
700 : : : : 1500
Y 1400
600 [=¥=5 =810 =20 ~0—30 —A—random| 1300 [=¥=5 =810 <420 =6~ 30 —A—random|

1200
1100
1000
900
800
701
600
500
401
301
200
100

Avg. time cost of lookup (us)
n
(=3

Avg. power cost of lookup (uJ)

=
=3
=3

1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
Length of time range (s) Lenth of time range (s)

(a) average access time (b) average energy cost

Fig. 22. Value-based lookup.

sequence, when looking up the data given a time range, we only need to judge whether
this range is contained in a subtree area or not, then, we can read the sequential pages
in the area.

5.4.3. Comparison for Insert Operation. Table VIII presents the insert cost of the three
trees. We observe that both TL-Tree and u(n)-Tree have better performance than u-
Tree. What makes the write performance of p(n)-Tree superior to u-Tree is the key
buffer we have added in the main memory, since the need to move all index nodes
from the buffer to the flash arises only when the key buffer is full. This operation is
very similar to the process of the raising tree in TL-Tree, and thus they have close
performance. However, due to the specific structure, TL-Tree has a bigger raising
tree than the buffer assigned to u(n)-Tree, which leads to less accesses to the flash.
Therefore, TL-Tree outperforms wu(n)-Tree.

5.5. Value-Based Lookup Operation

We evaluate the value index structure introduced in Section 3.3 and the search oper-
ation presented in Section 4.2. The query searches for the temperature data between
x7C and x5C within a time range of #; and #;. The temperature values are randomly
generated in the range of [—20, 50], and the time range is set from 1000 to 6000 in
increments of 1000. We did two different types of experiments: one is for a fixed-value
range query where the range is set to [5, 10, 20, 30], and the other is for a variable
value range where they are randomly selected in [0, 30].

The simulation results are shown in Figure 22. We observe the following: First, for
each value range, as the time range increases, both the energy and time cost decrease.
This is as in the previous discussion. Second, as the value range of the query increases,
the performance becomes better. This is because if a query looks for data with a larger
value range, it is more possible that the bulk of data are stored within a page or in
continuous pages of a block. Finally, the costs for the random case are very low and

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:27

stable. These results further indicate the benefits of adapting TL-Tree to the sensor
applications.

6. IMPLEMENTATION

Currently, the MicaZ platform lacks support for raw NAND flash storage [Agrawal
et al. 2009]. Consequently we developed a driver for a raw NAND flash that
comprises a 128MB Toshiba NAND chip (TC58DVGO02A1FT00) for a storage sys-
tem on the MicaZ platform. The driver provides read, write, and erase inter-
faces to control the NAND flash directly. Interested users can access the code at
http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-1.x/contrib/beihang/. Above the
driver, we have also implemented a prototype of a TL-Tree-based storage system on
the MicaZ platform running TinyOS 1.x. Our system is written in nesC, and consists of
a few hundred lines of code that implement the storage allocator and indexing module.
More details can be found at http:/nand.herokuapp.com/.

7. RELATED WORK

Energy and Memory Efficiency. Energy optimization is probably one of the most impor-
tant objectives for the file system design of sensor platforms. Capsule [Mathur et al.
2006] achieves energy efficiency by optimizing the organization of storage objects to
the type of access methods. Later, FlashDB [Nath and Kansal 2007] proposed a dy-
namic self-tuning database for NAND flash. It considers the specific characteristics
of NAND flash and the workload, presenting a self-tuning B*-Tree that can adapt to
the dynamic behavior of the workload and the underlying device. FlashLogger [Nath
2009] is an energy-efficient sensor data logging system that uses lazy amnesic compres-
sion in a flash-efficient manner. Although these approaches achieve energy efficiency
from different aspects, among them, only Capsule and FlashLogger claim to adopt a
memory cognizant design. Capsule employs a hardware abstraction layer that hides
the vagaries of flash memories from the application and uses a log-structured design
along with write caching for memory efficiency. FlashLogger abstraction uses approxi-
mately 500 lines of nesC code and it has around 14KB ROM footprint and 1.5KB RAM
footprint on a Moteiv Tmote Sky node. Unlike these efforts that tried to optimize the
organization of the object or maintain compressed data on flash using a small memory
footprint, our work takes the main memory constraint into the index design consid-
eration. Through the optimization of the cascaded index structure, TL-Tree not only
minimizes the in-memory usage, but also enhances the flash capacity.

Time-Series Concern. To the best of our knowledge, there have been few efforts with
a specific design target for both time-series data management and temporal query
support for NAND flash on sensor platforms. From the data organization perspective,
according to the method of data arrangement, MicroHash [Zeinalipour-Yazti et al. 2005]
is probably the closest storage structure to TL-Tree because it provides an append-only
and time-based storage. However, it proposes a hash-based index structure and index is
built on the value, not the time as in TL-Tree. This method needs to generate one index
record for each data record. Also, for the time-range queries, it may have to search the
whole flash memory—a big cost in both time and energy. ELF [Dai et al. 2004] is a log-
structured flash file system especially for microsensor nodes. Its design considered the
temporal sensing data and attempted to avoid excessive energy consumption. However,
it is designed for the NOR flash only, so it cannot be directly used for the NAND flash
memory due to the specific read/write characteristics.

Others. YAFFS [Aleph One 2001] seems to be the first log-structure file system
designed especially for raw NAND flash. But it only supports the page size of 512-bytes
NAND flash chips. Though YAFFS2 [Aleph One 2005] supports more NAND flash
chips, the capacity is still very limited. CFFS [Lim and Park 2006] is a log-structured

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:28 H.Lietal

file system that takes in a pseudo-hot-cold separation to reduce the garbage collection
overheads. Although these log-structured systems have good performance for update
and garbage collection, they are not designed for sensor platforms, so they do not
optimize for memory and energy. In u-Tree [Kang et al. 2007], the whole search read
index is packed into one page, which can reduce the update pages when out-of-place
updating happenes. But it needs at least 50% of the storage capacity to store the index
information, which is a big waste for flash. LA-Tree [Agrawal et al. 2009] is a universal
index system designed for SSD and other NAND flash. It uses cascaded update buffers
that greatly reduce the update pages. However, due to the limited main memory and
flash characteristics, where to put the buffer is a challenging problem.

8. CONCLUSIONS AND FUTURE WORK

In this article we propose the TL-Tree, a time-log, cascaded, fast load-in, unexpected
power-off-tolerant and power-optimized tree index system for the raw NAND flash
used for sensor platforms. TL-Tree consists of three components: root tree, subtrees,
and raising tree, where each part can be viewed as an individual tree structure. The
differences between TL-Tree and the standard B*-Tree are many. First, according to
the index construction of TL-Tree, TL-Tree is not a balanced tree, and the search path
from the tree root node to a leaf can be of different lengths. Therefore, it violates
the most important property, namely, the balance property of B*-Tree. Also, there
is no other physical storage needed for the non-leaf TL-Tree nodes because of the
full subtree property. However, in traditional DBMS, the non-leaf B*-Tree nodes are
normally physically stored in another place such as main memory or cache rather than
disk, to speed up the search since the nodes are not full and the deletion operation can
lead to a different physical structure.

Compared with the state-of-the-art, TL-Tree is designed specifically for time-series
sensor data stored in NAND flash on memory-constrained sensor platforms. With
memory-cognizant structure design, TL-Tree cannot only sustain large flash storage ca-
pacity, but also achieve significant performance in terms of access and energy efficiency
for both time- and value-based queries. Specifically, it offers the following benefits.

(1) Read cache impact. Although as the cache size increases, TL-Tree can obtain more
benefit that enables it to perform similarly to the other indexing structures, the read
cache has relatively little influence for the time-range lookup operation. The reason
is that TL-Tree keeps the temporal sequence property in the indexing structure, so
the performance is stable and not sensitive to different data arrival distributions. In
addition, the cache hit rate does not vary much for different cache sizes. This further
demonstrates the advantage of the temporal design of TL-Tree that dominates the
performance.

(2) Efficient lookup and insert operations. Compared to flash-oriented B™-Tree, TL-
Tree has superior performance. For instance, under the 100% workload condition
for the random lookup, the access time of TL-Tree takes only about 37% and 33%
of u(n)-Tree and u-Tree, respectively. It has similar benefits with respect to energy
costs. For an insert operation, u-Tree consumed 7 to 9 times the time and energy
compared to TL-Tree.

(8) Effective value-based retrieval. The extended value-supporting TL-Tree has shown
effective performance for the value-based queries, such as searches for the temper-
ature data between x{C and xJC within a time range of #; and #. In addition to
the superior results for varying time ranges, we also observed that, as the value
range increases, both the time cost and energy cost decrease. This decrease is more
significant for those queries with relatively smaller time windows.

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

Flash-Optimized Temporal Indexing for Time-Series Data Storage on Sensor Platforms 62:29

Although TL-Tree is able to effectively support a large fraction of timestamp-based
and value-based queries in sensor applications, we only considered sensor data with
small size, such as temperature or humidity for wireless sensor networks. How to ex-
tend TL-Tree to index multimedia sensor data stored in flash is one of our important
future works. Also, designing an embedded temporal database management system to
support those queries that involve multiple-value types appears to be another promis-
ing and challenging topic to examine.

REFERENCES

A. A. Abbasi and M. Younis. 2007. A survey on clustering algorithms for wireless sensor networks. Comput.
Comm. 30, 14-15, 2826-2841.

D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and S. Singh. 2009. Lazy-adaptive tree: An optimized index
structure for flash devices. In Proceedings of the 35" International Conference on Very Large Databases
(VLDB’09). 361-372.

ALEPH ONE. 2001. Yaffs: Yet another flash file system. http:/www.yaffs.net.

ALEPH ONE. 2005. Yaffs2 specification and development nodes. http://www.yaffs.net.

ATMEL. 2001. ATmel AT49f1024 datasheet. http://www.atmel.com.

M.-L. Chiao and D.-W. Chang. 2011. Rose: A novel flash translation layer for NAND flash memory based on
hybrid address translation. IEEE Trans. Comput. 60, 6, 753-766.

H. Cho, D. Shin, and Y. I. Eom. 2009. Kast: K-associative sector translation for NAND flash memory
in real-time systems. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE’09).

Y.-S. Chu, J.-W. Hsieh, Y.-H. Chang, and T.-W. Kuo. 2009. A set-based mapping strategy for flash-memory
reliability enhancement. In Proceedings of the Conference on Design, Automation, and Test in Europe
(DATE’09). 405-410.

H. Dai, M. Neufeld, and R. Han. 2004. Elf: An efficient log-structured flash file system for micro sensor
nodes. In Proceedings of the 2" ACM Conference on Embedded Networked Sensor Systems (SenSys’04).
176-187.

P. Desnoyers, D. Ganesan, and P. Shenoy. 2005. Tsar: A two tier storage architecture using interval skip
graphs. In Proceedings of the 3" ACM Conference on Embedded Networked Sensor Systems (SenSys’05).
39-50.

Y. Diao, D. Ganesan, G. Mathur, and P. Shenoy. 2007. Rethinking data management for storage centric sensor
networks. In Proceedings of the 3"% Biennial Conference on Innovative Data Systems Research (CIDR’07).
410-419.

E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi. 2007. In-network aggregation techniques for wireless sensor
networks: A survey. IEEE Wirel. Comm. 14, 2, 784-789.

J. Gehrke and S. Madden. 2004. Query processing in sensor networks. Pervas. Comput. 3, 1, 46-55.

G. Graefe. 2009. The five-minute rule twenty years later, and how flash memory changes the rules. Comm.
ACM 52,7, 48-59.

A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam. 2011. Leveraging value locality in optimizing
nand flash-based SSDS. In Proceedings of the 9" USENIX Conference on File and Storage Technologies
(FAST’11).

D. Kang, D. Jung, J.-U. Kang, and J.-S. Kim. 2007. u-tree: An ordered index structure for NAND
flash memory. In Proceedings of the 7" ACM/IEEE International Conference on Embedded Software
(ACM/EMSOFT07). 144-153.

S. J. Kwon, A. Ranjitkar, Y.-B. Ko, and T.-S. Chung. 2011. FTL algorithms for NAND-type flash memories.
Des. Autom. Embed. Syst. 15, 3—4, 191-224.

S. Lee, D. Shin, Y.-J. Kim, and J. Kim. 2008. Last: Locality-aware sector translation for NAND flash memory-
based storage systems. ACM Oper. Syst. Rev. 42, 6, 36—42.

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer,
and D. Culler. 2005. Tinyos: An operating system for wireless sensor networks. In Ambient Intelligence,
Springer, 115-148.

H. Li, Y. Liu, W. Chen, W. Jia, B. Li, and J. Xiong. 2013. Coca: Constructing optimal clustering architecture
to maximize sensor network lifetime. Comput. Comm. 36, 3, 256—268.

S.-H. Lim and K.-H. Park. 2006. An efficient NAND flash file system for flash memory storage. IEEE Trans.
Comput. 55,7, 1-17.

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

62:30 H.Lietal

S. Madden, J. Hellerstein, and W. Hong. 2005. Tinydb: In-network query processing in tinyos. http://telegraph.
cs.berkeley.edu/tinydb/tinydb.pdf.

G. Mathur, P. Desnoyers, P. Chukiu, D. Ganesan, and P. Shenoy. 2009. Ultra-low power data storage for
sensor networks. ACM Trans. Sensor Netw. 5, 4, 33:1-33:34.

G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. 2006. Capsule: An energy-optimized object storage
system for memory-constrained sensor devices. In Proceedings of the 4" ACM Conference on Embedded
Networked Sensor Systems (SenSys’06). 195—-208.

S. Nath. 2009. Energy efficient sensor data logging with amnesic flash storage. In Proceedings of the Inter-
national Conference on Information Processing in Sensor Networks (IPSN’09). 157-168.

S. Nath and A. Kansal. 2007. Flashdb: Dynamic self-tuning database for NAND flash. In Proceedings of the
6" International Conference on Information Processing in Sensor Networks (IPSN’07). 410-419.

D. Park, B. Debnath, and D. Du. 2010. CFTL: A convertible flash translation layer adaptive to data access
patterns. In Proceedings of the ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’10). ACM Press, New York, 365—-366.

R. Ramakrishnan and J. Gehrke. 2003. Tree indexes. In Database Management Systems, McGraw-Hill Higher
Education, 360-363.

SAMSUNG. 2014. M390S2858CT1 datasheet. http://www.samsung.com/global/system.

W. Song, R. Huang, M. Xu, A. Ma, B. Shirazi, and R. Lahusen. 2009. Air-dropped sensor network for real-time
high-fidelity volcano monitoring. In Proceedings of the 7" International Conference on Mobile Systems,
Applications, and Services (MobiSys’09). 305-318.

R. Tan, G. Xing, J. Chen, W. Song, and R. Huang. 2009. Quality-driven volcanic earthquake detection using
wireless sensor networks. In Proceedings of the 315 IEEE Real-Time Systems Symposium (RTSS’09).
271-280.

TOSHIBA INC. 2014. Nand vs. nor flash memory technology overviews. http://umcs.maine.edu/~cmeadow/
courses/cos335/Toshiba%20NAND_vs_ NOR_Flash_Memory_Technology_Overviewt.pdf.

TOSHIBA INC. 2003. Toshiba tc58dvg02alft00 datasheet. http://www.toshiba.com/taec-Datasheet:
TC58DVG02A1FTO00.

N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman. 2005. Multi-query optimization for sensor
networks. In Proceedings of the 15 IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS’05). 307-321.

D. Woodhouse. 2001. Jffs: The journalling flash file system. In Proceeding of the Ottawa Linux Symposium.

C.-H. Wu, L.-P. Chang, and T.-W. Kuo. 2007. An efficient b-tree layer implementation for flash-memory
storage systems. ACM Trans. Embed. Comput. Syst. 6, 3.

C.-H. Wu, H.-H. Lin, and T.-W. Kuo. 2010. An adaptive flash translation layer for high-performance storage
systems. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 29, 6, 953-965.

Y. Yao and J. Gehrke. 2002. The cougar approach to in-network query processing in sensor network. IEEE
Trans. Comput. 31, 3, 9-18.

D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and W. A. Najjar. 2005. Microhash: An effcient
index structure for flash-based sensor devices. In Proceedings of the 4!* USENIX Conference on File and
Storage Technologies (FAST’05). 31-44.

Received July 2012; revised August 2013; accepted August 2013

ACM Transactions on Sensor Networks, Vol. 10, No. 4, Article 62, Publication date: June 2014.

